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6 Depth, Cohen–Macaulay and Gorenstein

Definition 6.1. Let A be a Noetherian ring, I an ideal of A and M a finite A-module. We define the
I-depth depthIM of M as the maximum length of an M -regular sequence contained in I.

If depthIM = 0, that is, I is contained in the zerodivisors of M , it follows by prime avoidance that
I ⊂ P for some associated prime P ∈ AssM .

Before stating and proving results regarding depth and the Ext groups, we recall a lemma1 that we
use in the proof of Theorem 6.2.

Lemma 6.1. Let A be a ring and N,M modules over A. Assume that N is finitely presented. Then
HomA(N,M)P ∼= HomAP

(NP ,MP ) for any P ∈ SpecA. Here finite presentation of N means there exists
A⊕r � N → 0 with finitely generated kernel; this holds when A is Noetherian and N is finite.

Theorem 6.2. Fix n ≥ 1. Let A be a Noetherian ring, I an ideal of A and M a finite A-module with
M/IM 6= 0. Equivalent conditions:

(1) ExtiA(N,M) = 0 for all i < n and for every finite A-module N with SuppN ⊆ V (I).

(2) ExtiA(A/I,M) = 0 for all i < n.

(3) ExtiA(N,M) = 0 for all i < n and for some finite A-module N with SuppN = V (I).

(4) depthIM ≥ n: there exists an M -regular sequence in I of length n.

Proof. 1 ⇒ 2 ⇒ 3 are trivial given that Supp(A/I) = V (I).
We prove 3 ⇒ 4 by induction on n ≥ 1. If n = 1, then Ext0A(N,M) = HomA(N,M) = 0 for some

finite A-module N with SuppN = V (I). Suppose for a contradiction that there is no M -regular element
in I, that is, I only contains zerodivisors of M . Then by Lemma 1.2 (3), I is contained in

⋃
P∈AssAM

P ,
and this is a finite union by Lemma 1.2 (4). So by prime avoidance, I is contained in an associated
prime P . In other words, P ∈ V (I) = SuppN and hence NP 6= 0. So by Nakayama, NP /(PAP )NP 6= 0.
However, if we write k(P ) for the residue field AP /PAP , we get

NP /(PAP )NP = k(P )⊗AP
NP = k(P )⊗AP

(AP ⊗A N)

= (k(P )⊗AP
AP )⊗A N = k(P )⊗A N.

Thus k(P )⊗AN is a nonzero k(P )-vector space and so by linear algebra, Homk(P )(k(P )⊗AN, k(P )) 6= 0.
Pick a nonzero k(P )-homomorphism f . Then f is clearly also an AP -homomorphism. Also, since P is an
associated prime, we have an injection, A/P ↪→ M and since localisation is exact, we have an injection
ι : k(P ) ↪→MP . Now consider the composite

NP → NP /(PAP )NP = k(P )⊗A N
f−→ k(P )

ι
↪→MP .

This is nonzero and hence HomAP
(NP ,MP ) 6= 0. So by Lemma 6.1, HomA(N,M) 6= 0 which gives a

contradiction. This proves the case n = 1. Now suppose n > 1. By the base case, we must have some
x1 ∈ I which is M -regular. Put M1 := M/x1M , then we have a short exact sequence

0→M
x−→M →M1 → 0,

Applying the covariant Ext gives a long exact sequence

· · · → Exti−1A (N,M1)→ ExtiA(N,M)
x−→ ExtiA(N,M)→ ExtiA(N,M1)→ Exti+1

A (N,M)→ · · ·

But by assumption, ExtiA(N,M) = 0 for all i < n, and hence ExtiA(N,M1) = 0 for all i < n − 1. So
by induction, there exists an M1-regular sequence x2, . . . , xn in I and hence x1, . . . , xn is an M -regular
sequence in I so we are done.

1This belongs earlier with the discussion on localisation S−1 ⊗A S−1. Localisation is exact, and compatible with Hom
modules. I used it in the proof that locally free implies projective.
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To prove 4 ⇒ 1, we again argue by induction on n ≥ 1. If n = 1, then we have an M -regular
element x ∈ I. Let N be finite such that SuppN ⊆ V (I). Since N is finite, V (AnnN) = SuppN and
so I ⊆ rad(AnnN). Thus xm ∈ AnnN for some m ≥ 1. Let ϕ ∈ Ext0A(N,M) = HomA(N,M). Then
xmϕ(n) = ϕ(xmn) = ϕ(0) = 0. But recall that x is M -regular, hence it must be the case that ϕ(n) = 0
for all n ∈ N , which proves the base case. Now let n > 1 and let x1, . . . , xn be an M -regular sequence in
I. Put M1 := M/x1M , then we have a short exact sequence

0→M
x1−→M →M1 → 0

Again we get a long exact sequence

· · · → Exti−1A (N,M1)→ ExtiA(N,M)
x1−→ ExtiA(N,M)→ ExtiA(N,M1)→ Exti+1

A (N,M)→ · · · .

Now x2, . . . , xn is an M1-regular sequence in I and so by induction, ExtiA(N,M1) = 0 for all i < n − 1.
Hence from the long exact sequence, we get an injection

0→ ExtiA(N,M)
x1−→ ExtiA(N,M)

for all i < n. But ExtiA(N,M) is a subquotient of HomA(N, Ii), where I q is an injective resolution
of M . The same argument as in the base case shows that for some m ≥ 1 multiplication by xm1 kills
the A-module HomA(N, Ii) and so it also kills ExtiA(N,M). So multiplication by xm1 as an endomor-
phism of ExtiA(N,M) is both injective (as the composition of injective maps) and the zero map, hence
ExtiA(N,M) = 0 for all i < n. Notice that the assumptions A Noetherian and M finite are not necessary
for the proof of 4 ⇒ 1.

Corollary 6.3. Let A be a Noetherian ring, I an ideal of A and M a finite A-module. Then

depthIM = inf{i | ExtiA(A/I,M) 6= 0}

Proof. Let d := depthIM . Then we have a regular sequence of maximal length x1, . . . , xd in I. Put
Mi := M/(x1, . . . , xi)M for i = 1, . . . , d. We start with the usual short exact sequence

0→M
x1−→M →M1 → 0

Applying Ext
q
A(A/I, –) gives a long exact sequence,

· · · → Exti−1A (A/I,M)→ Exti−1A (A/I,M1)→ ExtiA(A/I,M)
x1−→ ExtiA(A/I,M)→ · · · .

By the previous theorem, ExtiA(A/I,M) = 0 for all i < d, thus from the exact sequence we see that
ExtiA(A/I,M1) = 0 for all i < d− 1. Now if i = d− 1, we have an exact sequence

0 = Extd−1A (A/I,M)→ Extd−1A (A/I,M1)→ ExtdA(A/I,M)
x1−→ ExtdA(A/I,M)

Since x1 ∈ I, multiplication by x1 kills ExtdA(A/I,M) and so Extd−1A (A/I,M1) ∼= ExtdA(A/I,M)We next
consider the short exact sequence

0→M1
x2−→M1 →M2 → 0

Repeating the process above using the information we just obtained about the A-modules ExtiA(A/I,M1)
for i < d − 1 gives that ExtiA(A/I,M2) = 0 for all i < d − 2 and Extd−2A (A/I,M2) ∼= Extd−1A (A/I,M1).
Iterating this, we get a chain of isomorphisms

ExtdA(A/I,M) ∼= Extd−1A (A/I,M1) ∼= · · · ∼= Ext1A(A/I,Md−1) ∼= Ext0A(A/I,Md)

Thus if ExtdA(A/I,M) is zero, Ext0A(A/I,Md) is also zero. Thus by Theorem 6.2, there exists an Md-
regular element xd+1 ∈ I. But then x1, . . . , xd, xd+1 would be an M -regular sequence contained in I,
which contradicts depthIM = d.
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Remark. If A,m, k is local Noetherian and M finite, we simply write depthM to mean depthmM =
inf{i | ExtiA(k,M) 6= 0}

Corollary 6.4. Let A,m be a local Noetherian ring and M a finite A-module with depthM = n. Then we
can extend any M -regular sequence x1, . . . , xr ∈ m to a maximal regular sequence x1, . . . , xn (necessarily
r ≤ n).

Proof. If r = n we are done so assume r < n. We again put Mi := M/(x1, . . . , xi)M for i = 1, . . . , r.
Then from the proof of the previous corollary, we have that ExtrA(A/I,M) ∼= Ext0A(A/I,Mr). Since
r < n, we know by Theorem 6.2 that ExtrA(A/I,M) = 0 and hence Ext0A(A/I,Mr) = 0. But again by
Theorem 6.2, this gives us an Mr-regular element xr+1 ∈ m, and thus x1, . . . , xr, xr+1 is an M -regular
sequence. This process can be iterated until we reach maximal length.

Corollary 6.5. Let A,m be a local Noetherian ring and M a finite A-module. If x1, . . . , xr is an M -
regular sequence in m, then

depth(M/(x1, . . . , xr)M) = depthM − r.

Proof. Clearly, depthM ≥ depth(M/(x1, . . . , xr)M) + r, that is, depth(M/(x1, . . . , xr)M) ≤ depthM −
r. Conversely, let d := depthM ≥ r. By Corollary 6.4, x1, . . . , xr can be extended to a maximal
sequence x1, . . . , xr, xr+1, . . . , xd. Then xr+1, . . . , xd is a regular sequence for M/(x1, . . . , xr)M . Thus
depth(M/(x1, . . . , xr)M) ≥ depthM − r.

Theorem 6.6 (Ischebeck’s Theorem). Let A,m be a local Noetherian ring, and M,N nonzero finite
A-modules. Put depthM = k and dimN = n. Then

ExtiA(N,M) = 0 for all i < k − n.

Proof. We argue by induction on n ≥ 0. If n = 0, then A/AnnN is zero dimensional Noetherian and
hence Artinian, with unique prime ideal m/AnnN . So V (AnnN) = V (m) and hence by Theorem 6.2
ExtiA(N,M) = 0 for all i < k. Now let n > 0. By Corollary 1.3, we have a chain 0 = N0 ⊆ N1 ⊆ · · · ⊆
Nr = N , with Ni/Ni−1 ∼= A/Pi, with Pi ∈ SpecA. Suppose we had the result for N = A/P , P ∈ SpecA.
Consider the short exact sequence

0→ A/P1 → N2 → A/P2 → 0

Applying the contravariant Ext
q
A(–,M), we get a long exact sequence

· · · → ExtiA(A/P2,M)→ ExtiA(N2,M)→ ExtiA(A/P1,M)→ · · ·

Then ExtiA(A/P1,M) = ExtiA(A/P2,M) = 0 for i < k −max{dim(A/P1),dim(A/P2)} and so

ExtiA(N2,M) = 0 for i < k −max{dim(A/P1),dim(A/P2)}.

Next we consider the short exact sequence

0→ N2 → N3 → A/P3 → 0

and repeating the same argument, we get that ExtiA(N3,M) = 0
for all i < k −max{dim(A/P1),dim(A/P2),dim(A/P3)}.

Continuing in the same way we get that ExtiA(N,M) = 0 for all i < k − maxri=1{dim(A/Pi)}. But
recall that by exactness o localisation, SuppN =

⋃r
i=1 Supp(A/Pi), where Supp(A/Pi) = V (Pi) is closed

for each i. Hence n = dimN = maxri=1{dim(A/Pi)}, which gives the result. Thus it suffices to prove the
induction step for N = A/P with P ∈ SpecA. Since n = dim(A/P ) > 0, P is not maximal. Thus we can
find x ∈ m that is not in P (In other words, x ∈ m is A/P -regular). Consider the short exact sequence

0→ A/P
x−→ A/P → A/(P + xA)→ 0
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Applying the contravariant Ext, we get a long exact sequence

· · · → Exti−1A (A/(P + xA),M)→ ExtiA(A/P,M)
x−→ ExtiA(A/P,M)→ ExtiA(A/(P + xA),M)→ · · ·

Now since x is A/P -regular and A/(P+xA) = (A/P )/x(A/P ), we have by Corollary 5.8, that dim(A/(P+
xA)) = n− 1. So by induction, ExtiA(A/(P + xA),M) = 0 for all i < k − (n− 1) = k − n+ 1. Hence we
have an isomorphism

0→ ExtiA(A/P,M)
x−→ ExtiA(A/P,M)→ 0

for all i < k−n. But x ∈ m and ExtiA(A/P,M) is a finite A-module, thus by Nakayama, ExtiA(A/P,M) =
0 for all i < k − n.

Corollary 6.7. Let A,m be local Noetherian and M finite. Then for any P ∈ AssAM

dim(A/P ) ≥ depthM.

Proof. Suppose for a contradiction that depthM > dim(A/P ). Then by Theorem 6.4, we have that
Ext0A(A/P,M) = HomA(A/P,M) = 0. But P is an associated prime, hence we have an injection
A/P ↪→M . so we get a contradiction.

Definition 6.2. LetA,m be local Noetherian andM finite. Recall that we always have dimM ≥ depthM
by Corollary 5.8. We say that M is Cohen–Macaulay (CM for short) if M 6= 0 and dimM = depthM ,
that is if the depth of M is as large as possible. The zero module is also Cohen–Macaulay by convention.
A local Noetherian ring is Cohen–Macaulay if it is Cohen–Macaulay as a module over itself.

Lemma 6.8. Let A,m be a local Noetherian ring and M a finite A-module. If M is Cohen–Macaulay,
then dim(A/P ) = dimM = depthM for every associated prime P ∈ AssAM .

Proof. One can show that rad(AnnM) =
⋂
P∈AssAM

P and hence V (AnnM) =
⋃
P∈AssAM

P (in this
case AssAM is finite). Hence

dimM = dim(V (AnnM)) = dim
⋃

P∈AssAM

P

= max
P∈AssAM

dim(V (P )) = max
P∈AssAM

dim(A/P )

≥ min
P∈AssAM

dim(A/P ) ≥ dimM.

Here the last inequality follows from Corollary 6.5. Since M is CM, dimM = depthM and so the result
follows.

Lemma 6.9. Let A,m be local Noetherian, M finite and x1, . . . , xr an M -regular sequence in m. Then
M is Cohen–Macaulay if and only if M/(x1, . . . , xr)M is Cohen–Macaulay.

Proof. This follows at once by Corollary 5.8 and Corollary 6.5.

Lemma 6.10. Let A,m be a local Noetherian ring and M a finite A-module with dimM = δ(M) = n.
Equivalent conditions:

(1) M is Cohen–Macaulay (that is, depthM = dimM).

(2) Every system of parameters x1, . . . , xn of M is an M -regular sequence.

Proof. 2 ⇒ 1 is clear by definition of depth and the fact that dimM ≥ depthM always holds.
For 1 ⇒ 2, we argue by induction on n ≥ 0. If n = 0, there is nothing to prove. Let n = 1. Let

x ∈ m, with M/xM finite length. Then dim(A/(AnnM + xA)) = dim(M/xM) = 0. We now claim that
x /∈ P for any P ∈ AssAM . If x ∈ P ∈ AssAM , then AnnM + xA ⊆ P and hence A/P is a quotient of
A/(AnnM + xA). So

dim(A/P) ≤ dim(A/(AnnM + xA)) = 0
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However, since we assume that M is CM, we have dim(A/P) = dimM = 1 by Lemma 6.8, which gives a
contradiction. Thus x is not contained in any associated prime and so it must be M -regular, proving the
base case. Now suppose n > 1, and let x1, . . . , xn be a system of parameters of M . Let M1 := M/x1M .
Then dim(M1) = δ(M1) = n − 1 and hence the same argument as in the base case shows that x1 is
M -regular. Thus by Lemma 6.9, M1 is CM of dimension n − 1 and so by induction, any system of
parameters of M1, is an M1-regular sequence. In particular, x2, . . . , xn must be an M1-regular sequence
and so x1, . . . , xn is an M -regular sequence.

So far we have defined Cohen–Macaulay local rings (and modules). In our quest for various equivalent
ways to define Gorenstein local rings, we first state and prove a result that characterises the injective
dimension of a module based on the vanishing of certain Ext groups.

Theorem 6.11. Let A be a Noetherian ring and N an A-module. Then

inj dimN ≤ n if and only if Extn+1
A (A/P,N) = 0 for every P ∈ SpecA.

Proof. The forwards direction is trivial. Conversely, suppose Extn+1
A (A/P,N) = 0 for every P ∈ SpecA,

and let M be a finite A-module. We have a filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M with each
Mi/Mi−1 ∼= A/Pi for some Pi ∈ SpecA. By repeatedly taking short exact sequences induced from the
filtration (as in previous proofs), using the long exact sequence of Ext, we deduce that Extn+1

A (M,N) = 0.
Now let

0→ N → I0
d0−→ I1 → · · · → In−1

dn−1

−−−→ In
dn−→ In+1 → · · ·

be an injective resolution of N . Set C := In−1/ ker(dn−1). I claim that C is injective. We have

0→ C ∼= im(dn−1)→ In
dn−→ In+1 → · · ·

is exact. That is, In
dn−→ In+1 dn+1

−−−→ In+2 → · · · is an injective resolution of C. Hence

Ext1A(M,C) = Extn+1
A (M,N) = 0

Now the choice of finite M was arbitrary. In particular this holds for M = A/I where I is any ideal of
A. Consider the short exact sequence

0→ I → A→ A/I → 0

Applying the contravariant Ext
q
A(–, C) gives the exact sequence

0→ HomA(A/I,C)→ HomA(A,C)→ HomA(I, C)→ Ext1A(A/I,C) = 0

Thus the induced map HomA(A,C)→ HomA(I, C) is surjective, that is every A-homomorphism I → C,
extends to an A-homomorphism A → C. Hence C is injective by Baer’s criterion and thus N has an
injective resolution of length n.

Definition 6.3. Let A,m be a local ring and N an A-module. We define the socle of N to be the
submodule

Socle(N) := {m ∈ N | Ann(m) ⊃ m}

This is naturally isomorphic to HomA(k,N) via the map sending an element f ∈ HomA(k,N) to f(1).
We can view Socle(N) as a k-vector space in a natural way.

Theorem 6.12. Let A,m, k be a local Artinian ring. Equivalent conditions:

(1) Socle(A) ∼= k. That is the socle of A, is 1-dimensional as a k-vector space.

(2) A is injective as a module over itself.
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Proof. We first prove 1 ⇒ 2. To say that A is self-injective is the statement that A has zero injective
dimension. Thus from Theorem 6.11, it suffices to show that Ext1A(A/P,A) = 0 for all P ∈ SpecA. But
A is local Artinian and hence SpecA = {m}. Thus we are left with showing that Ext1A(k,A) = 0. Since
A is Artinian, it admits a Jordan–Hölder series

0 = A0 ⊂ A1 ⊂ · · · ⊂ An−1 ⊂ An

Ai/Ai−1 ∼= k for all i = 1, . . . , n. Here An = A, and necessarily An−1 = m and A1
∼= k. First consider

the short exact sequence
0→ k → A2 → k → 0

Applying the contravariant Ext
q
A(–, A) gives a long exact seqeunce

0→ HomA(k,A)→ HomA(A2, A)→ HomA(k,A)
δ2−→ Ext1A(k,A)→ · · ·

Thus we have

`A(HomA(A2, A)) = 2 `A(HomA(k,A))− `A(im(δ2)

= 2 dimk(HomA(k,A))− `A(im(δ2))

Now consider the short exact sequence

0→ A2 → A3 → k → 0

Playing the same game gives

`A(HomA(A3, A)) = `A(HomA(A2, A)) + `A(HomA(k,A))− `A(im(δ3))

= 3 dimk(HomA(k,A))− `A(im(δ2))− `A(im(δ3))

Continuing in the same way gives

`A(HomA(An, A)) = ndimk HomA(k,A))−
n∑
i=2

`A(im(δi)).

But we are assuming that Socle(A) = HomA(k,A) is 1-dimensional as a k-vector space. Therefore
dimk(HomA(k,A)) = 1. Also,

`A(HomA(An, A)) = `A(HomA(A,A)) = `A(A) = n

(the length of our Jordan–Hölder series). Thus the above equality becomes

n = n−
n∑
i=2

`A(im(δi))

So every term in the sum must be zero and hence δi = 0 for all i. In particular, we have an exact sequence

0→ HomA(k,A)→ HomA(A,A)→ HomA(m, A)
δn=0−−−→ Ext1A(k,A)→ Ext1A(A,A) = 0

We deduce that Ext1A(k,A) = 0 and we are done.
The proof of 2 ⇒ 1 is similar. We use the same Jordan–Hölder series for A, and consider the same

short exact sequences arising from this series. However, we assume that A is injective as an A-module, so
the functor HomA(–, A) is exact. So at each step `A(HomA(Ai, A)) = `A(Ai−1, A)) + dimk(HomA(k,A)).
Thus we end up with

n = `A(HomA(An, A)) = ndimk(HomA(k,A))

from which we conclude that the socle of A is 1-dimensional as required.
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We are now finally in a position to define Gorenstein local rings in 4 equivalent ways

Definition 6.4. Let A,m be local Noetherian. We say that A is Gorenstein if it satisfies any of the four
conditions of the next theorem.

Theorem 6.13. Let A,m be local Noetherian and dimA = n. Let x1, . . . , xn be a system of parameters
of A. Equivalent conditions:

(1) ExtiA(k,A) = 0 for all i 6= n and ExtnA(k,A) ∼= k.

(2) A is Cohen–Macaulay and ExtnA(k,A) ∼= k.

(3) A is Cohen–Macaulay and the Artinian quotient A/(x1, . . . , xn) has 1-dimensional socle.

(4) A is Cohen–Macaulay and the Artinian quotient A/(x1, . . . , xn) is self-injective.

The theorem says that Gorenstein is essentially Cohen–Macaulay plus a bit extra. Characterisations
3 and 4 tell us that the extra condition is that we can cut A by a system of parameters (or equivalently
by Lemma 6.9, by a regular sequence!) to dimension 0 (that is, Artinian), and the resulting quotient
satisfies some nice properties. In other words, n-dimensional Gorenstein is being able to find a regular
sequence of length n such that the resulting Artinian quotient satisfies one of the equivalent properties
in 3 or 4.

Proof. 1⇒ 2 is trivial by using the characterisation of depth in terms of the nonvanishing of Ext groups.
For 2 ⇔ 3, recall that since A is n-dimensional CM, in particular depthA = n and hence we’ve seen
before that ExtnA(k,A) ∼= Ext0A(k,A/(x1, . . . , xn)) = HomA(k,A/(x1, . . . , xn)) form which the result
follows. Note that this also shows that 3 and 4 do not depend on the choice of such system of parameters.

Now for 3 ⇔ if 4, we can simply invoke Theorem 6.12, after observing that Socle(A/(x1, . . . , xn)) =
HomA(k,A/(x1, . . . , xn)) is isomorphic to HomA/(x1,...,xn)(k,A/(x1, . . . , xn)) as A/(x1, . . . , xn)-modules.

Thus we only have 2 ⇒ 1 left to prove. For this we argue by induction on n. If n = 0, then
HomA(k,A) ∼= k and by Theorem 6.12, A is self injective and thus computing the Ext groups, using an
injective resolution of A, we get that ExtiA(k,A) = 0 for all i > 0. Now suppose n > 0. Since A is CM,
depthA = n > 1 and hence we have some regular element x ∈ m. Put A1 := A/xA. Then by Corollary 5.8
and Lemma 6.9, A1 is n− 1-dimensional and CM. Thus by induction, ExtiA1

(k,A1) = 0 for all i 6= n− 1

and Extn−1A (k,A) ∼= k. We also have, for all i ≥ 1, ExtiA(k,A) ∼= Exti−1A1
(k,A1). Hence ExtiA(k,A) = 0

for all i > 0 and not equal to n, and ExtnA(k,A) ∼= k. For i = 0, let ϕ ∈ Ext0A(k,A) = HomA(k,A). Then
since x ∈ m, it annihilates k and we have xϕ(1) = ϕ(x) = ϕ(0) = 0. But recall by assumption that x is
A-regular thus we must have that ϕ(1) = 0 and thus Ext0A(k,A) = 0 which concludes the proof.

7


	Depth, Cohen–Macaulay and Gorenstein

